Skip to content
November 10, 2015 / jpschimel

Greenhouse Gas Production by Faculty Seminars

Mitch Wagener and I wrote this years ago when I was at the University of Alaska and he was a Ph.D. student. We originally published it online as part of the “First International Virtual Symposium on Mad Science.” That always bugged me because there was no “mad science” involved—we actually collected the data and it’s all real. I still list this as a “technical report” on my C.V. I hadn’t been able to find a copy of this for a long time, but one recently appeared and I thought this blog would be a good place to give it new life. I hope you find it entertaining.

The Production of Greenhouse Gases in Faculty Seminars

Stephen M. Wagener and Joshua P. Schimel

University of Alaska Fairbanks

Recently Hungadunga and McCormick (1991) observed that, in the natural course of their duties, academic biologists produce only a little less CO2 and CH4 than do feedlot cattle. As an interesting aside, they also found that only politicians ranked higher than cattle in the production of these gases. Unfortunately, university administrators were not tested.

It had long been observed at our institute that during faculty seminars the room—lovingly referred to as the Autoclave—gets stuffy and people often fall asleep. We named this phenomenon Seminar Narcolepsy Syndrome (SNS, pronounced snooze). It is also evident that some seminars cause a much higher level of SNS than do others. We hypothesized that the SNS might be caused by excessive CO2 in the seminar room. This raised several issues that we addressed in this experiment: Is SNS actually caused by CO2? Is this phenomenon related to the seminar topic? How might faculty seminars contribute to the production of the greenhouse gases CO2 and CH4?

During the fall and winter of 1991-1992 we took air samples at four locations in the seminar room at 15 minute intervals during faculty seminars. The sample takers were various graduate students and faculty. We also measured beginning and ending temperatures and counted the attendees. We analyzed samples using gas chromatography. We wished to also measure relative humidity and atmospheric mercaptans, but our GC was not set up to analyze mercaptans and we were persuaded that using a sling psychrometer during the seminars would be disruptive.

The ornithology and mammalogy seminars generated the most carbon dioxide per capita. This is not surprising considering the excitement these subjects generate at our biological institute. Since people respire less while asleep, dips in CO2 during the plant ecology, stream ecology and invertebrate zoology seminars probably indicate people nodding off. The microbial ecology seminar produced by far the most methane, although there was a sharp drop 15 minutes before the end. This corresponds to certain people (probably mammalogists) leaving early. Methane concentrations actually went down during the plant ecology seminar.


Our initial hypothesis was that high CO2 induced SNS and caused the audience to fall asleep. In fact we found the opposite: mammalogy and ornithology seminars caused some serious heavy breathing and greatly accelerated CO2 production. Other subjects had both higher incidences of SNS and reduced CO2 build up. It is possible that at a microbiology institute, micrographs of bacterial conjugation would stimulate heavy breathing, while moose conjugation might induce SNS. We suspect that a seminar on human conjugation would induce heavy breathing in all academic institutes.

Spectators at plant ecology seminars appear to be facultative methanotrophs. The only other animals known to consume methane are several species of marine clam; this relationship may therefore require a major reevaluation of the place of plant ecologists in the phylogenetic tree. We also found that carbon dioxide accumulates faster in the east half of the seminar room, while methane increases faster in the west side. This could be due to the fact that certain people consistently sit in the same spot. The effect is that the seminar room can generate its own weather patterns.

We have the following recommendations for making faculty seminars more eco-friendly:

  • Only boring seminars should be allowed. Not only would this reduce the production of greenhouse gases, but it would have the added benefit of reducing the overall stress level of attendees.
  • Each attendee should be encourage to bring a potted plant. Tomato plants would be ideal if one has a strong opinion about the seminar presenter. However, attendees should probably wait until after the seminar to get themselves potted.
  • Room lights should remain on at all times to encourage photosynthesis. However, this could also have the negative and unrealistic effect of encouraging people to stay awake.
  • No one should be allowed in the seminar room who had the burrito special for lunch.


Hungadunga, M.L. and F.G. McCorrnick. 1991. Human sources of greenhouse gases. North Dakota Journal of Natural Gas Production 107:23-45

Table 1. Seminar topic, attendance, temperature, and gas concentrations

                                Number of     Temperature      Ending CO2      Ending CH4

Seminar Topic         Attendees            ° C                     %                     ppm

Ornithology                      70                    27                     0.15                 2.19

Mammalogy                     60                    26                     0.19

Plant Ecology                   75                    27                     0.14                 1.88

Plant Taxonomy               50                    26                     0.10                  2.37

Invertebrate Zoology        75                    26                      0.15

Stream Ecology                75                    25                     0.11                 2.31

Biochemistry                    30                    26                      0.04

Microbial Ecology            50                    26                      0.09                  4.42

October 2, 2015 / jpschimel

How to Recommend Reviewers when you Submit a Paper?

I’m one of the Chief Editors of a major international journal and I need to find reviewers for ~150 papers a year. A substantial fraction of those papers are in sub-fields I’m not deeply expert in. So we ask authors to suggest reviewers. I never rely entirely on that list, but I always start by looking at it for ideas and inspiration.  While some reviewer lists are really helpful,  others are useless. Why? What makes a good list of recommended reviewers?

Keep in mind several principles:

  1. I’m looking for people who I think I can trust to give objective, thoughtful, and critical reviews.
  2. I’m a senior researcher in my field and I know the big names.
  3. The most senior people in your field are very busy.

So how do these principles translate into a good list of recommended reviewers?

First, if you suggest the three biggest names in the field, I already know them! And I already know they are likely to say no. So by suggesting those gods, you’ve done me no help at all.

Alternatively, if you recommend people I suspect might be too close to you, I worry that they won’t give a critical review. For many U.S. and European scientists, I know the relationship structures, but if I’m unsure, I look for reviewers from different Countries, States, or at least different Universities. For example, I might ask someone from York to review a paper from Exeter (in the U.K.), or someone from Umea to review a paper from Lund (in Sweden). But for an American paper, I’ll still usually try to avoid two US. Reviewers; Soil Biology & Biochemistry is an international journal and we take that seriously. If I have reason to suspect the quality of your recommendations, I’m unlikely to use any of them.

So, if you are a scientist in a small country with a small research community, don’t recommend three reviewers from your country! If, for example, a Czech scientist recommends three people with .cz email addresses, I’m likely to disregard all of them, especially if they are names I don’t know well. Honestly, I’d even be suspicious of two .cz addresses.

On this matter, China remains the biggest question mark for me. China may be as large and with as dispersed a research community as the U.S., but the Chinese research community is still emerging on the international stage (at least in my field) and I don’t have as good a sense of where all the different units are or what the relationships are, which I do have for the U.S. and Europe. Chinese naming practices—few, but common, family names—also make it harder for outsiders to assess who’s who. There are many Li’s, Zhu’s, etc. It’s like Wales, where half the population is named Jones, except the Chinese population is 6600 times larger. In contrast I know only one other Schimel in Ecology and he’s my brother. So if you’re Chinese, I’d recommend that you not suggest three Chinese reviewers (and maybe not even two).

O.K., so I’ve told you what not to do. What should you do? How do you put together a reviewer list that I, as editor, will find useful in helping me find good reviewers quickly?

Give a list of people who aren’t the obvious “usual suspects” in the broad field. In terms of seniority, focus on mid-career (e.g. Associate Prof. level in the U.S. rank scale is often ideal); junior faculty or even postdocs can also be great if they’ve done interesting and insightful work in your area. Often younger researchers do the best reviews, and the ideal is someone who’s had enough experience to develop vision and perspective, but who still has the time in their life to commit to doing a thoughtful review. The perfect name is one to which my response will be “Ah ha, of course! I hadn’t thought of her, but she’d be great.”

Give me three of those, and I will be grateful and impressed. Never a bad way for the editor to feel when he’s beginning the process of determining your paper’s fate.

February 10, 2015 / jpschimel

Data vs. Knowledge: a sorry letter from 1963

Thanks to Andy Hoffman for a column that brought to my attention this letter (Chaos in the Brickyard) that was published in Science in 1963. Already, the author, Dr. Bernard Forscher was concerned that science was increasingly focused on producing “bricks”–little pieces of information, rather than “Edifices”–real bodies of useful knowledge. That was in 1963 people!

Forscher Bricks vs. Edifices

Dr. Forscher wrote this as a parable, but the idea is directly analogous to my distinction between data, information, knowledge, and understanding. Ultimately science is about edifices: knowledge and understanding. Yet many scientists never do more than make bricks–individual nuggets of information.

I think Dr. Forscher was visionary: our reward systems increasingly skew toward rewarding bricks. The more we focus these systems on simple quantitative metrics, such as the Impact Factor of the journal a paper was published in, the more Dr. Forscher’s vision becomes true and the more we end up focused on the “bricks for brick-ness’ sake” rather than on the ultimate goal of building structures.

Reward systems should target direct measures of a scientists contribution to building real structures of knowledge, rather than just on their ability to produce bricks. That is something that peers can usually do easily, and sophisticated network mapping software can do with difficulty (e.g. Thompson Reuters Citation Laureates), but the simple metrics are mostly incapable of–they only measure bricks.

The concerns Dr. Forscher raised in 1963 have only become more extreme as has the importance of the reminder that to have real impact as a scientist, you need to force yourself and your trainees to aim for edifices. The ultimate goal of science is to advance human understanding. We build our great edifices of understanding out of individual pieces of information (bricks), but a brick’s value is only as great as its contribution to an edifice. A brick, by itself, on it’s own and isolated, remains a block of clay and straw. The papers that ultimately matter are those that offer more than just information–they offer real knowledge and insight.

Andy Hoffman’s column is available at: (

February 6, 2015 / jpschimel

These Things You Cannot Take


This isn’t about “Writing Science,” rather it is the ultimate of personal writing by someone who I respect deeply for his science but equally for his humanity and eloquence in the face of adversity. I repost it because they are people who are close to me, a message that is equally so, and it shows a power of language. Alan, Diana, and Neva, the thoughts and wishes of all your friends are with you.

Originally posted on Alan Townsend's Blog:

My wife Diana was recently diagnosed with a brain tumor, the second brain tumor to hit our family in fifteen months. They are unconnected events – lightning striking twice unimaginably.  For the first one, still very much a part of our young daughter’s life, we shared a great deal here.  We may do the same for this latest challenge, or we may not.  It’s a bridge we have not yet crossed.  But on World Cancer Day, here are a few words.  

I’ve had a recurrent dream since last Friday.  I am afloat on an equatorial sea, a sweep of beach to my back.  Before me, lines of aquamarine rise from the depths in metronomic intervals as though the sea itself is but the rippling skin of some unseen leviathan.

The waves begin to build, each one just a touch higher than the last, and in the crystalline walls appear the faces of those…

View original 852 more words

January 26, 2015 / jpschimel

Language Pet Peeves #2: “Impact”

Here’s another word I want to add to my pet peeve list: “Impact.” It’s overused to the point of meaninglessness, and it often has little meaning anyhow.

I blame Thompson-Reuters for this over-use because they developed the “Impact Factor.” This, of course is a way of assessing the average citation levels for journals. As the impact factor has become the dominating metric of the publishing world, so has it emphasized the word “impact” as something to strive for. So, I see many people using “impact” in hopes of increasing their impact factor. Sorry, it doesn’t work that way.

I know some avowed language purists argue that “impact” should be restricted to a physical blow (its original meaning), but its figurative meaning “”the effective action of one thing or person upon another; the effect of such action; influence; impression” [OED] has been in use since at least the early 1800’s. Used well and carefully, it can be a great word.

No, my issues with “impact” are massive over-use and minimal clarity. When you try to express the impactfullness of your work by describing every effect and influence as an impact, the real impact of all your “impacts” is to deaden readers’ senses and reduce the impact of “impact.” Ok, that’s overkill, but you get the point.

More important though, is that “impact” is a fuzzy verb (Writing Science section 14.2, pg. 137). It sounds specific and concrete, but it isn’t—rather, it says there was an effect, but not what the effect was. That is a problem that goes way beyond mere overuse, which is a crime against linguistic aesthetics and style. Being unclear is failing in communication.

Consider sentences such as the following:

There was a strong impact of added ESX on the growth of Daphnia.”

The rate of GDH activity was impacted by altered salinity.”

Here, “impact” is a synonym for “effect,” and is devoid of content. Did ESX increase or decrease Daphnia growth? If ESX were presented as a potential toxin, I might infer that the effects were bad, since “impact” suggests a strong result, but the word itself doesn’t tell me—thus if fails in its mission. Instead, tell me what happened: “ESX substantially reduced growth” or “GDH activity was increased.”

You can sometimes use words like “influenced” or “altered” as an opening when the patterns of response were complex and you can’t capture the pattern with a single word, for example, “ESX altered the growth of Daphnia, initially increasing growth rate but later reducing it, such that overall yield was reduced.” But “impact” is a poor choice for that role, as it implies simple, direct, substantial action (e.g. an asteroid’s impact crater).

Remember the writer’s rule: “Show, don’t tell.” If you show us that there were interesting and significant influences and patterns in your results, you will convince us. Describing those influences as “impacts” to make them feel important won’t. Rather, it will feel like you’re trying too hard to speak for your results, which makes me suspicious. The role of language in science is to help the data speak for themselves. It’s to bring out and highlight what nature is showing us—not to try to impose a message upon nature.

“Impact” often feels like the author is trying to pump up their results, is heavily overused, and is surprisingly lacking in substance. That’s a trifecta that earns it this week’s place in Josh’s language pet peeves.

January 3, 2015 / jpschimel

Language Pet Peeves

This may become a recurring column, as even among experienced and knowledgeable scholars, there are some really common misuses of language. Here, as a start, are two that I find particularly frustrating, although I’m not particularly pedantic.

Principal vs. Principle.

Principal: The lead person.

Principle: A code of personal action (she has principles) or a fundamental truth (e.g. first principles).

I can’t say how many proposals I’ve seen where the investigators describe themselves as Principle investigators. Why can’t people remember that they are Principal investigators: the primary, important, person in charge. I certainly expect investigators to have principles, but a “Principle Investigator” is studying ethics, not science.

Combining words that should stay separate–nouns that should not be used as a verb:

Feedback: This word is only a noun. It may not be correctly used as a verb. Hence ecosystems can’t feedback on climate. The may feed back on climate. The combined form is only for the noun: a feedback between ecosystems and climate.

Uptake: This is also only a noun. You can take up something but you can’t uptake it. You can measure uptake, but this is now grammatically a noun.

Breakdown: Also not a verb. The verb is two words: break down, but a breakdown is an event. When your car broke down, it had a breakdown.

The pattern here is that these word pairs combine an action (feed, take, break) and a direction (up, down, back), the verb form leaves the words separate: the action stays distinct. Only when you make them into a compound noun do the words smash together.

January 2, 2015 / jpschimel

Condensing on a deadline, or Why justified margins are not justified

When trying to condense an 18-page draft into a 15-page limit, it’s not words you need to cut, but lines. If cutting a word doesn’t save you a line, it doesn’t achieve anything.

Particularly when time is pressing (which it almost always is when there’s a page limit), my approach is to first look for the low hanging fruit. Or in this case, the low hanging words; paragraphs with a few words dangling on the last line—words known as “orphans” in typography. If you can tighten the language and cut a few well chosen words, you can pull those orphans up into the body of a paragraph and save an entire line. It is hard to save a line when a paragraph’s last line is full; then you probably have to cut an entire sentence.

Cutting a single word, however, won’t necessarily open the space needed for an extra word, and won’t necessarily give the orphans a home in the body of the paragraph. Whether cutting one word will save a line depends on three things: 1) how big a word you cut, 2) how much extra space there is on the line already, and 3) how long the first word on the next line is. Cutting a short word on a full line that is followed by a long word isn’t going to save space.

For example, let’s look at the following paragraph (screen shots from Microsoft word, Times New Roman 12 pt. text):

Just p 1

I’m sure I can trim enough to make room for the orphan “individual monomers” in the body of the paragraph and so save a line.

One approach to condensing is to start at the beginning and find words to cut. Using this approach, the first word, I’d eliminate is “enzyme” in the second sentence: we’ve already identified that b-Galactosidase is an enzyme, so we don’t need to restate it.

Just p 2

But, this didn’t solve the problem! The first word on the following line, “exoglycosidase,” is too long to fit on the first line. The language is tighter, but I still have the orphans.

A quicker approach is to look for easy targets. The obvious one here is the 4th line, which ends with a big space. It should be easier to make enough space for an extra word. It also has an easy word to delete: “long” from “long polymers.” Polymers are by definition “long,” so “long” is an empty amplifier—an adjective that adds no real meaning (Writing Science pg. 164).

Just p 3

Bingo! That did it. By scanning the right hand margin, I was able to quickly identify a place where there was room I could use, and so speed the work of getting rid of the orphans and save myself a line. The alternative of working through word-by-word might have gotten me to the same place in the end, but it would have taken longer.

I was able to scan for the easy target because I formatted the paragraph as “Align Text Left” (the Microsoft term for what typographers call “Flush Left”) which leaves a ragged right edge. If I had switched this formatting to “Justified,” which forces the text to align along both the left and right margins, the original paragraph would have looked like:

Just p 4There are two problems here:

  1. I can’t see where there may be an easy place to cut. If you really like the tidy look of justified margins, you can edit in flush left and then switch to justified, but that raises the other problem with justified margins in word-processers.
  1. It’s hard to read. People don’t read letter-by-letter, or even word-by-word. We actually read by grabbing groups of small words at a time. The only time you have to stop for single words is for long, complex, or unusual words. To read quickly and smoothly, there shouldn’t be too much space between words and those spaces should be consistent. Word justifies margins by inserting extra spaces between words. But this can leave long and erratic gaps between words, making the text  hard to read.

We’re used to thinking that justified margins are pretty and professional-looking; after all books and magazines invariably use justified margins and they are wonderfully easy to read. True, but they use sophisticated typesetting systems that adjust spacing between words and even between letters within a word, and which hyphenate words when necessary to avoid creating excessive spaces. Microsoft Word can hyphenate, but how many people even know where to find the settings for it? If you hyphenate the original example paragraph, it looks like this:Just p 5

This doesn’t have the nasty gaps between words that the simple justified version does, but it didn’t eliminate orphans, and hyphenating technical words makes them harder to read.

If you’re producing a document using a sophisticated typography system, you can do proper justifying that adjusts space between letters as well as between words to get polished text and properly justified margins. But do any of us ever use those systems? It’s possible in LaTex, but even LyX, a popular LaTex-based word processor,  by default only adjusts inter-word, rather than inter-letter, spacing and so will be no better than MS Word at avoiding awkward spacing within paragraphs. In a Column in about justified type Ilene Strizver says “the wise designer will refrain from using justified type unless there’s a compelling reason to do so, and only when he or she has the time and flexibility to fine-tune the text.”

My Principle #1 is “It is the author’s job to make the reader’s job easy.” If you’re not using sophisticated typography, the best way to do that is to use flush left formatting. It will be easier to read and it will be much easier to work in if you need to condense to a page limit.


Get every new post delivered to your Inbox.

Join 80 other followers